
Numerical Physics: Synchrotron radiation effect on 
dynamical vacuum with localized photon stops in a VLHC 
Stage 2 beam screen section - Steady state

� Abstract

The objective of this paper is to the discuss the numerical approach to the calculation of dynamical vacuum when 

synchrotron radiation hits a photon stop arranged in a 1m beam screen section, of the Very Large Hadron Collider VLHC 

Stage 2.

� Photodesorption from a photon stop induced by synchrotron 
radiation

The diffusion equation describing the flow of a non uniform gas is given by the Fick's second law 

�
n � z, t �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

t
� � 	 
 D � 	 n 
 z, t � � 
 1�

where D is the diffusion coefficient, and n(z,t) represents the gas density. We assume that in the VLHC Stage 2, the 

synchrotron radiation induces photodesorption by hitting a localized photon stop arranged in a beam screen 1 m long 

section. Furthermore, ion pumps are located at 5 m from the photon stop, as shown in Fig. 1. Holes in the beam screen 

evacuate the photodesorbed gas from the beam pipe. Cryopumping is supplied by a coaxial 4oK cold surface. We need to 

generalize the Fick's equation to include cases when a source of gas is present and a distributed pumping is provided. In 

the beam screen section 

Ac



n 
 z, t �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �


t
� � 	 
 D Ac � 	 n 
 z, t � � � S' n � z, t � � Q � � z� � 2�

where Ac is the beam pipe cross section, S' the distributed pumping speed in the beam screen, Q the photodesorbed gas 

load, and the delta function � (z) represents the gas source localized at the photon stop. The photodesorbed gas load is 

proportional to the photon flux generated in a dipole magnet Q = ld  � �  � o where ld is the magnet length, � �  is the total 

photon flux, and � ois the photodesorption yield.

Fig. 1.  The photon stop is arranged inside the beam pipe in a limited beam screen 1 m long section. Ion pumps are located 

at 5 m from the photon stop.
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� Steady State case

We consider here the steady state problem � n � x, t� � � t �  0, with D and Ac uniform in space. Eq. (2), along the beam pipe 

axial length z, reads

Ac D
� 2n � z, t 	
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

�

z2 � S' n � z, t 	 � Q 
 � z	 � 0 � 3	
where S'� 0 in the beam screen section, and S'=0 in the 4.5 m sections ending with ion pumps. Boundary conditions apply 

at the ion pump locations z=±5 m

� D Ac

�
n � z�� � � � � � � � � � � � � � � � � � � � � � � � � ��

z
�

z � � z2

� S n � � z2 � � 4�
In particular, solving eq. (3) for an infinitely long beam screen section, with an axially uniform pumping speed, the 

analytic solution results  

n � z� � Q� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �
2 �             AS' D

e! " # # # # # # #S'$ $ $ $ $ $ $ $ $ $ $ $ $
AD z % & z' (

)
1 * + , z' -. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 / 0 0 0 0 0 0 0 0 0 0 0 0AS' D
Qe1 2 2 2 2 2 2 2S'3 3 3 3 3 3 3 3 3 3 3 3 3

AD z 4 55
6
[z] is the Heaviside step function. 

7 Numerical approach. Combined sections: beam screen and ion 
pump section.

We solve eq. (3) by a finite element numerical approach, for the combined sections shown in Fig. 1. Where, the beam 

screen section is defined by S' 8  0 for -0.5m 9  z 9  0.5m, and S' = 0 elsewhere. In this approach the density is defined on a 

lattice of discrete z - values ni  = n(i : z). To discretize eq. (3) the differential quotients have to be replaced by difference 

quotients

; 2 n< < < < < < < < < < < < < < < < < <;
z2 = 1> > > > > > > > > > > > > > > >?

z2 @ ni A 1 B 2 ni C ni D 1 E
F

nG G G G G G G G G G G G G GF
z H

1G G G G G G G G G G G G G G G G G GG
2 I z
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the continuous Dirac function M (z) = 

1N N N N N NO kP P P P P P P P P P P P P P P P P P P
1 Q k2 z2 , with kR S , can be discretized as

T U
zi V W 1X X X X X X X X XY kZ Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z

1 [ k2 \ i ] ẑ 2
\ 6 ^

where k  should be properly normalized to satisfy the condition  _ i ` a bb c d zi e  f z = 1, equivalent to g h ii j k
zl m z n 1. Thus, 

with the substitution o =AD p q z2, eq. (3) becomes a set of difference equations of the form
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� � ni � 1
� � S' � 2 � � ni � � ni � 1 	 k
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
� � 1 
 i2 k2 � z2� Q . � 7�

The 10 m long section is divided in N intervals, or N+1 nodes. The ion pump locations z=±z2 correspond to i = 0 and i = 

N. For i=1 and i=N, S'=0 and S� 0, and the boundary conditions (4) at z= - z2 and z= + z2  reads respectively

n0 � � 2 � z � S� � � � � � � � � � � � � � � �
A D � n1 � n2 , nN � � 2 � z � S� � � � � � � � � � � � � � � �

A D � nN � 1 � nN � 2 � 8 
where S is the ion pumping speed. Substituting eqs. (8) in eq. (7) we obtain the boundary conditions

� 2 ! � 2 S� � � � � � � � � � � � � � �� z � n1 � 2 ! n2 � k Q� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �" # 1 � k2 � z2 $ ,

� 2 ! � 2 S� � � � � � � � � � � � � � �� z � nN � 1 � 2 ! nN � 2 � k Q� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �" # 1 � k2 # N � 1$ 2 � z2 $ � 9 

Defining  n%&  = {n0, n1, ... , ' nN ( 1 ) * T and + , = {- . z1 / , - . z2 / , ... , . - . zN 0 1 / 1 / T , the above equation (7) can be written in a 

matrix-vector form as 2
n34 5 6 78 8

               or            9 : ; < 1
, n=> ? @ A => >

with the matrix elements, of the resulting B N C 1D E F N G 1H tridiagonal matrix, given as follows :

I J K L M N
S' O 2

ADP P P P P P P P P P P P P P P PQ
z2 R , for i S j , withS' T 0 only in the beam screen section            

U V W X  Y Z A D[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [\
z2 , for i ] j ^ 1

_ ` a b  Y Z A D[ [ [ [ [ [ [ [ [ [ [ [ [ [ [ [\
z2 , for i ] j c 1

S' d 0 only for Ne e e e e e e
2 f 0.5 mg g g g g g g g g g g g g g gh

z i i i Nj j j j j j
2 k 0.5ml l l l l l l l l l l l l l lm

z , corresponding to the beam screen section (central region of the matrix), 

while S'=0 elsewhere. Furthermore, the boundary conditions (9) results in the matrix elements

n o p o q r
2

A Ds s s s s s s s s s s s s s s st
z2 u 2

Ss s s s s s s s s s st
z v ,                           w x y z { | 2

A D} } } } } } } } } } } } } } } }~
z2

� � � � � � � � �   � 2
A D� � � � � � � � � � � � � � � ��

z2 ,                        � � � � � � � � � �
2

A D� � � � � � � � � � � � � � � ��
z2 � 2

S� � � � � � � � � � ��
z �

and                 � � � �  � 0 ,                           for � i � j � � 1
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Finally, the density profile is obtained by  n
�

  =  
� � �

.  
       The density profile computed numerically is shown in Fig. 2, considering a CO gas and assuming the following 

parameters (see also [1]): distributed pumping speed in the beam screen section S'=60 l/s-m, total photon flux                                 
� �

= 1.2 1016ph/s-m, CO photodesorption yield for copper � o= 1.5 10� 3 mol/ph [5],  dipole magnet length ld =14 m, gas load 
Q = ld 

� �
 � o = 2.5 1014molec/sec,  pumping speed of the ion pumps S=30 l/s, average beam pipe radius a=0.0125m,                 

Ac=4.9 10� 4 m2, D =10.22 m2/s. With numerical parameter: N=100, � z=0.1 m.

       

        Furthermore, the numerical solution has been checked with the analytical solution (5) as shown in Fig. 3. In 

particular, the analytic solution (5) is valid for an infinitely long beam screen section, where the density n(±	 ) 
 0. Thus, 

in the numerical calculation we consider S' � 0 for all the elements of the matrix, and impose the boundary conditions 
n(±z2) = 0, with  z2 >>0. 
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Fig. 2. CO density profile as a function of the distance from the photon stop, in a 10m long combined beam screen and ion 

pumps section, with S'=60 l/s-m and S=30 l/s.
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Fig. 3. Computed numerical density profile (dots) compared with the analytical solution eq. (5), for an infinitely long 

beam screen section.
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Numerical Physics: Synchrotron radiation effect on 
dynamical vacuum with localized photon stops in a VLHC 
Stage 2 beam screen section - Time dependent problem

� Abstract

The objective of this paper is to the discuss the numerical approach to the calculation of dynamical vacuum when 

synchrotron radiation hits a photon stop arranged in a 1m beam screen section, of the Very Large Hadron Collider VLHC 

Stage 2.

� Photodesorption from a photon stop induced by synchrotron 
radiation

The diffusion equation describing the flow of a non uniform gas is given by the Fick's second law 

�
n � z, t �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

t
� � � � D � � n � z, t � � � 1�

where D is the diffusion coefficient, and n(z,t) represents the gas density. We assume that in the VLHC Stage 2, the 

synchrotron radiation induces photodesorption by hitting a localized photon stop arranged in a beam screen 1 m long 

section. Furthermore, ion pumps are located at 5 m from the photon stop, as shown in Fig. 1. Holes in the beam screen 

evacuate the photodesorbed gas from the beam pipe. Cryopumping is supplied by a coaxial 4oK cold surface. We need to 

generalize the Fick's equation to include cases when a source of gas is present and a distributed pumping is provided. In 

the beam screen section 

Ac

�
n � z, t �� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

t
� � � � D Ac

� � n � z, t � � 	 S' n � z, t � 
 Q � � z� � 2�

where Ac is the beam pipe cross section, S' the distributed pumping speed in the beam screen, Q the photodesorbed gas 

load, and the delta function � (z) represents the gas source localized at the photon stop. 

Fig. 1.  The photon stop is arranged inside the beam pipe in a limited beam screen 1 m long section. Ion pumps are located 

at 5 m from the photon stop.
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� Time dependent problem

We consider here the time dependent problem � n � x, t� � � t �  0, with D and Ac uniform in space. Eq. (2), along the beam 

pipe axial length z, reads

Ac

�
n � z, t �	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	�

t

 Ac D

� 2n � z, t �	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	�
z2 � S' n � z, t � � Q 
 � z� � 3�

where S'� 0 in the beam screen section, and S'=0 for the 4.5 m sections ending with ion pumps.

In the general problem we condsider a representative example of SR generated by the passage of a single bunch in a 14 m 

long dipole magnet. Then, we compute the density profile of the photodesorbed gas molecules generated at t=0 at the 

photon stop location, and its evolution in time. We assume that all the emitted radiation is intercepted by a photon stop 

[2]. The density at the photon stop location is given by 

n � z, 0� 
 � � ld � d � 0 � � z� � 4�
where � � is the total photon flux, ld=14 m and � d  are respectively the magnet lenght and the time spent by a single bunch 

in the magnet, and � 0 is the photodesorption yield. Boundary conditions apply at the ion pump location  

� D Ac

�
n � z, t�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

z

�
z  ! z2 "

S n # $ z2 % & 5%

where z2=5m is the distance of the ion pump from the photon stop, and S is the ion pumping speed.

' Numerical approach. 

We solve eq. (3), by a finite element numerical approach, for the combined sections shown in Fig. 1. In this approach the 

density is defined on a lattice of discrete (z,t) - values

             ni( j)
 = n (i * z, j * t),                                                                                         

          n+, - j)  = {n1
j, n1

j , ... , nN . 1
j }                                                                                               

We will show that the density profile n
/ 0 j1  again follows a sort of exponential decay and that the eigenvalues and 

eigenfunctions of the original calculus can be approximated by the eigenvalues and functions of that matrix.

              

              n
/2 0 j1  =  3 n45 6 j 7 18   ,                 n9: ; j8  = < j

  n9: ; j 7 18
       

            n9: ; 08     ...      initial profile at time t=0 !

we will use indifferently the notation  ni= j>
 or  ni

j
.
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� Discussion of the problem. Combined sections: beam screen and 
ion pump section.

The differential equation of the problem is given by (3) with initial and boundary conditions (4-5). To discretize eq. (3), 

the differential quotients have to be replaced by difference quotients� 2 n� � � � � � � � � � � � � � � � � ��
z2

� 1� � � � � � � � � � � � � � � ��
z2

� ni � 1
j � 2 ni

j � ni 	 1
j 


�
n� � � � � � � � � � � � � ��
z

� 1� � � � � � � � � � � � � � � � � ��
2

�
z

� ni 	 1
j � ni � 1

j 

�

n� � � � � � � � � � � � � ��
t

� 1� � � � � � � � � � ��
t

�
ni

j � ni
j 
 1 �

n � ni
j

the continuous Dirac function � (z) = 1� � � � � �� k� � � � � � � � � � � � � � � � � � �
1 � k2 z2 , with k� � , can be discretized

� �
zi � � 1� � � � � � � � �� k� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

1 � k2
�
i � z� 2

where k should be properly normalized to satisfy the condition  � i � �   � ! zi "  # z = 1, equivalent to $ �   � ! z" % z & 1. The Dirac 

function term in eq. (3) will be here included in the initial condition (4). Thus, we drop the term including the Dirac 

function from eq. (3). Eq. (3) becomes a set of difference equations (multiplied by -' t) of the form

( ) ni * 1
j + , 1 + 2 ) + - t S ./ / / / / / / / / / / / / / / / / / /

A 0 ni
j 1 2 ni 3 1

j 4 ni
j 5 1 6 6 7

with the substitution 8  =D 9 t / 9 z2. 

Stability considerations: The fully implicit scheme (or backward time), considered here, is unconditionable stable for any 

choice of the step size : t [3], contrary to the Forward Time Centered Space (FTCS) scheme. On the other hand, to 

preserve the accuracy in the small-scale evolution of the solution we choose a step size value : t small enough to satisfy 

the condition  

2 D ; t/ / / / / / / / / / / / / / / / / / / / / / / /; z2
4 2 2 < 1

which is the stability criterion for the FTCS approach = .

The 10 m long section is divided in N intervals, or N+1 nodes. The ion pump locations z=±z2 correspond to i = 0 and i = 

N. For i=1 and i=N, S'=0 and the ion pumping speed S> 0, and the boundary conditions (5) at z= - z2 and z= + z2  reads 

respectively
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                    n0
j � � 2

�
z

� S� � � � � � � � � � � � � � � �
AD � n1

j � n2
j , nN

j � � 2
�

z
� S� � � � � � � � � � � � � � � �

AD � nN � 1
j � nN � 2

j . � 7	
Substituting eqs (7) in eq. (6) we obtain the boundary conditions�

1 � 2 
 � 2
�

t S� � � � � � � � � � � � � � � � � � � � � �
A

�
z � n1

j � 2 
 n2
j � n1

j � 1 ,
�
1 � 2 
 � 2

�
t S� � � � � � � � � � � � � � � � � � � � � �

A
�

z � nN
j � 2 
 nN � 1

j � nN
j � 1 � 8	

The above equations (6,7,8) can be written in a matrix-vector form as �
n�
 � j � � n�
 � j � 1�

               or            � � � � 1
, n�
 � j � � � n�
 � j � 1�

with thematrix elements, of theresulting� N � 1� � � N � 1� tridiagonalmatrix, given asfollows:

� � � � � �
1 � 2D

�
t� � � � � � � � � � � � � � � � � � � � � � � ��

z2
� �

t S�� � � � � � � � � � � � � � � � � � �
A � , for i � j , withS' � 0onlyin thebeamscreensection

� � � �  � � D
�

t� � � � � � � � � � � � � � � � � ��
z2 , for i � j � 1

� � � �  � � D
�

t� � � � � � � � � � � � � � � � � ��
z2 , for i � j  1

S' ! 0 only for N� � � � � � �
2 " 0.5m� � � � � � � � � � � � � � �#

z $ i $ N% % % % % %
2 & 0.5m� � � � � � � � � � � � � � �#

z , corresponding to the beam screen section (central region of the matrix), 

while S'=0 elsewhere. Furthermore, the boundary conditions (8) results in the matrix elements

� ' � ' ( �
1 � 2D

�
t� � � � � � � � � � � � � � � � � � � � � � � ��

z2
� 2

�
t S� � � � � � � � � � � � � � � � � � � � � �

A
�

z � ,                       
� ' � ) ( � 2

D
�

t� � � � � � � � � � � � � � � � � ��
z2

� * + ) � * + ' ( � 2
D

�
t� � � � � � � � � � � � � � � � � ��

z2 ,                             
� * + ' � * + ' ( �

1 � 2D
�

t� � � � � � � � � � � � � � � � � � � � � � � ��
z2

� 2
�

t S� � � � � � � � � � � � � � � � � � � � � �
A

�
z �

and              
� � � �  � 0 ,                           for , i � j , - 1

The initial condition is given by substituting the discretized . / zi 0  function in eq. (4), and reads  

ni
0 � 1 2 ld 3 d 4 0 5 16 6 6 6 6 67 k8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

1 9 k2 : i ; z< 2 = > 4' ?  

                                               

Finally, the density profile at time   t = j @  t , is obtained by iteration  n
A B j C =  D n

A B j E 1C .  
An example of the results of the numerical computation, is shown in Fig. 2 and 3, assuming the following 

parameters: distributed pumping speed in the beam screen section S'=60 l/s-m, total photon flux  F G = 1.2 1016ph/s-m, CO 
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photodesorption yield for copper �
o = 1.5 10 � 3molec/ph[5], dipole magnet length ld =14 m, average beam pipe radius 

a=0.0125 m, Ac=4.9 10� 4 m2, D =10.22 m2/s  (see also [1]). With numerical parameter: N=100, � t=50 � s, � z=0.1 m. � The eigenvalue problem 

Let � i and 
�

i be respectively the eigenvalues and eigenvectors of the matrix  � . The first eigenvectors are shown in Fig. 

4. The 	 i should be orthogonal with respect to the metrics of the linear problem, see Fig. 5.

                                
  � i , � j �   =  
 i, j   ,         �  Ai , B j �   =  6
k � 1

N

 Ai,k  Bk, j  =  A B              (9)

                                

The initial condition n�� � 0�  can be written as a linear combination of the eigenvectors

          n�� � 0�
  = � i     � i  � j   ,                     � i =  �  � j , n�� � 0 

 !                                                  

          

the coefficient  " i are shown in Fig. 6. The vector of the j-th timestep is then given by 

           n#$ % j&
 = '  ( j

 ) *+ +
   ,                                                                                    (10)

where again, , is the eigenvalues diagonal matrix , i, j - . i and /  is the matrix of the eigenvectors  0 i. The computed 

solution of the eigenvalue problem (10) is shown in Fig. 7. It is in very good agreement with the numerical solution shown 

in Fig. 2.1 Green function for an infinitely long beam screen section

The numerical calculation has been checked with the Green function solution obtained with the Fourier analysis of the 

problem. We will give the analytic solution for the time dependent spatial distribution of the density for an infinitely long 

beam screen tube satisfying the condition that N molecules are puffed into the tube at time t=0 and at the photon stop 

location z=0

Ac 2 n 3 z, t 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 52 t 6 Ac D 2 2n 3 z, t 45 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 52 z2 7 S' n 3 z, t 4 8 N 9 3 z4 9 3 t 4 3 114
Using the Fourier series representations of the Delta function 9 3 z4 6 15 5 5 5 5 5 5 5 5 5 5 5 5 5 5

2 : ; < == > ikz ? k @ A t B C 1D D D D D D D D D D D D D D D
2 E F G HH I G iJ t K L

and considering that the density n(z,t) is related to its Fourier transform nM (z,t) as

n N z, t O P 1Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q QN 2 R O 2 S T UU V
k

V W X
i Y kz Z [ t\ n] ^ z, t _ ^ 12_
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substituting the previous representations in eq. (11) we obtain the expression for n� (z,t)

n
� �

z, t � � N� � � � � � � � � � � ��
Ac

i� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � i Dk2 � i S'� � � � � � � � � �
Ac

the solution is obtained from eq. (12) and is given by 

n
�
z, t � � 1� � � � � � � � � � � � � � � � � � � � � � � � ��

2 � � 2

N� � � � � � � � � � � ��
Ac

	 
 �� �
k 
 ikz

	 
 �� �
� 




i � t i� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � i Dk2 � i S'� � � � � � � � � �

Ac

following [4], we obtain the density profile for an infinitely long beam screen section

n
�
z, t � � N� � � � � � � � � � � ��

Ac � � z2� � � � � � � � ��
Dt� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � �

4 � Dt � � S'� � � � � � � � � �
Ac

t � 13�
which is a Gaussian distribution in z with a standard deviation increasing with the square root of time � = � � � � � � � � �2Dt , and with 

an exponential decay in time due to the beam screen pumping speed.

        The solution of the numerical calculation has been compared with the Green function solution (13) as shown in Fig. 

8,  t=5ms after the synchrotron radiation hits the photon stop. In particular, the Green function solution (13) is valid for an 

infinitely long beam screen section, where the density n(±� ) � 0. Thus, in the numerical calculation we consider S' � 0 for 

all the elements of the matrix, and impose the boundary conditions n(±z2) = 0, with  z2 >>0. 
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z0=0 m, A=0.00049 m2, Dz=10 cm, Dt=0.00005 s
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Fig. 2. Density profile in a VLHC Stage 2 combined section, beam screen and ion pump sections. The synchrotron 

radiation hits the photon stop at t=0. The photon stop located at z=0, is arranged in a 1m long beam screen section.  
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Fig. 3. Density profile in a VLHC Stage 2 combined section, beam screen and ion pump sections. The synchrotron 

radiation hits the photon stop at t=0. The photon stop located at z=0, is arranged in a 1m long beam screen section.  

The First eigenvectors
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Fig. 4. The first eigenvectors 
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Fig. 5. Graphical representation of the internal product, checking the orthogonality of the eigenvectors 
�

i with respect to 

the metrics of the linear problem. 
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Fig. 6. Coefficient  � i of the projection of the vector n�� � 0�
 , on the orthogonal basis of the eigenvectors � j.
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Fig. 7. Eigenvalue problem. Analytical results of the solution eq. (10), in agreement with the numerical solution (Fig. 2). 

Density profile in a VLHC Stage 2 combined section, beam screen and ion pump sections. 
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Fig. 8. Computed numerical density (dot) compared with the Green function solution at time t =5 ms, for an infinitely long 

beam screen section.
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